Co-expression of metabotropic glutamate receptor 7 and N-type Ca(2+) channels in single cerebrocortical nerve terminals of adult rats.
نویسندگان
چکیده
The modulation of calcium channels by metabotropic glutamate receptors (mGluRs) is a key event in the fine-tuning of neurotransmitter release. Here we report that, in cerebrocortical nerve terminals of adult rats, the inhibition of glutamate release is mediated by mGluR7. In this preparation, the major component of glutamate release is supported by P/Q-type Ca2+ channels (72.7%). However, mGluR7 selectively reduced the release component that is associated with N-type Ca2+ channels (29.9%). Inhibition of P/Q channels by mGluR7 is not masked by the higher efficiency of these channels in driving glutamate release when compared with N-type channels. Thus, activation of mGluR7 failed to reduce the release associated with P/Q channels when the extracellular calcium concentration, ([Ca2+]o), was reduced from 1.3 to 0.5 mm. Through Ca2+ imaging, we show that Ca2+ channels are distributed in a heterogeneous manner in individual nerve terminals. Indeed, in this preparation, nerve terminals were observed that contain N-type (31.1%; conotoxin GVIA-sensitive) or P/Q-type (64.3%; agatoxin IVA-sensitive) channels or that were insensitive to these two toxins (4.6%). Interestingly, the great majority of the responses to l-AP4 (95.4%) were observed in nerve terminals containing N-type channels. This specific co-localization of mGluR7 and N-type Ca2+-channels could explain the failure of the receptor to inhibit the P/Q channel-associated release component and also reveal the existence of specific targeting mechanisms to localize the two proteins in the same nerve terminal subset.
منابع مشابه
mGluRs and Ca channels in single nerve terminals Subtype-specific expression of group III metabotropic glutamate receptors and Ca-channels in single nerve terminals*
Carmelo Millán, Rafael Luján, Ryuichi Shigemoto, and José Sánchez-Prieto Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, 28040-Madrid, Spain. ╥ Centro Regional de Investigaciones Biomédicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Campus de Albacete, 02071-Albacete, Spain. ╠ National Institute for Physiological Sciences, Myodaiji Okazaki 444-8585, ...
متن کاملPalmitoylethanolamide Inhibits Glutamate Release in Rat Cerebrocortical Nerve Terminals
The effect of palmitoylethanolamide (PEA), an endogenous fatty acid amide displaying neuroprotective actions, on glutamate release from rat cerebrocortical nerve terminals (synaptosomes) was investigated. PEA inhibited the Ca²⁺-dependent release of glutamate, which was triggered by exposing synaptosomes to the potassium channel blocker 4-aminopyridine. This release inhibition was concentration ...
متن کاملGambierol Inhibition of Voltage-Gated Potassium Channels Augments Spontaneous Ca Oscillations in Cerebrocortical Neurons
Gambierol is a marine polycyclic ether toxin produced by the marine dinoflagellate Gambierdiscus toxicus and is a member of the ciguatoxin toxin family. Gambierol has been demonstrated to be either a low-efficacy partial agonist/antagonist of voltage-gated sodium channels or a potent blocker of voltage-gated potassium channels (Kvs). Here we examined the influence of gambierol on intact cerebro...
متن کاملEchinacoside Inhibits Glutamate Release by Suppressing Voltage-Dependent Ca2+ Entry and Protein Kinase C in Rat Cerebrocortical Nerve Terminals
The glutamatergic system may be involved in the effects of neuroprotectant therapies. Echinacoside, a phenylethanoid glycoside extracted from the medicinal Chinese herb Herba Cistanche, has neuroprotective effects. This study investigated the effects of echinacoside on 4-aminopyridine-evoked glutamate release in rat cerebrocortical nerve terminals (synaptosomes). Echinacoside inhibited Ca(2+)-d...
متن کاملGambierol inhibition of voltage-gated potassium channels augments spontaneous Ca2+ oscillations in cerebrocortical neurons.
Gambierol is a marine polycyclic ether toxin produced by the marine dinoflagellate Gambierdiscus toxicus and is a member of the ciguatoxin toxin family. Gambierol has been demonstrated to be either a low-efficacy partial agonist/antagonist of voltage-gated sodium channels or a potent blocker of voltage-gated potassium channels (Kvs). Here we examined the influence of gambierol on intact cerebro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 278 26 شماره
صفحات -
تاریخ انتشار 2003